VITOR AMADEU SOUZA

PIC32 – Uma Nova Tecnologia

Com base no modelo PIC32MX320F032H

Programado em C pelo Compilador C32 Microchip

- © 2010 by Cerne Tecnologia e Treinamento Ltda.
- © 2010 by Vitor Amadeu Souza

Nenhuma parte desta publicação poderá ser reproduzida sem autorização prévia e escrita de **Cerne Tecnologia e Treinamento Ltda.** Esta apostila publica nomes comerciais e marcas registradas de produtos pertencentes a diversas companhias. O editor utiliza as marcas somente para fins editoriais e em benefício dos proprietários das marcas, sem nenhuma intenção de atingir seus direitos.

Julho de 2010

Direitos reservados por:

Cerne Tecnologia e Treinamento Ltda

Produção: Cerne Tecnologia e Treinamento

E-mail da Empresa: cerne@cerne-tec.com.br

Home Page: www.cerne-tec.com.br.com.br

Atendimento ao Consumidor: sac@cerne-tec.com.br

Contato com o Autor: vitor@cerne-tec.com.br

Dedicatória

Como nos meus outros

livros, dedico este livro a minha querida esposa Renata Leal.

Agradecimentos

Agradeço primeiramente a Deus por ter me possiblitado conhecer pessoas tão maravilhosas em toda a minha vida, que de fato me ajudaram a ser o que sou hoje. Agradeço em especial a minha esposa, Renata Leal, por acreditar em mim desde o primeiro dia em que nos conhecemos.

Prefácio

A Microchip vem lançando novidades a cada dia e a linha PIC32 faz parte deste enorme leque. Estes novos Cis, que vem equipados com recursos de microcontroladores de 32 bits estão cada dia mais fazendo parte dos novos projetos eletrônicos. Este livro, chamado de Uma Nova Tecnologia vem para apresentar ao leitor a família PIC32 de microcontroladores e a linguagem C, com base no compilador C32 desenvolvido pela própria Microchip. O PIC32 estudado é o PIC32MX320F032H em encapsulamento TQFP de 64 pinos. O livro está organizado de forma que o leitor encontrará informações importantes sobre esta família, pois os exemplos e explicações estão desenvolvidos de forma a permitir que o leitor vá galgando, da primeira a última página no desenvolvimento de projetos eletrônicos com os recursos de hardware e software propostos no PIC32 e no C32.

Sobre o autor

Vitor Amadeu Souza nasceu em Nova Iguaçu – RJ e é formado em Eletrônica e Telecomunicações residindo na mesma cidade. Atua na área de projetos eletrônicos e já desenvolveu inúmeros projetos no microcontrolador PIC, dsPIC, 8051, AVR, HC908 e HOLTEK como taxímetros, interfaces USB, IrDA, Ethernet, protocolo CAN, MODBUS, RS-485, RS-232, controladores de cancela, conversores de protocolo, CLPs etc. Na parte de software, desenvolveu o compilador autoeasy (utilizado em robótica educacional). Também desenvolve projetos de hardware e software voltados para a área de robótica educacional. O autor também é sócio-diretor da Cerne Tecnologia e Treinamento, empresa voltada para educação tecnológica na área de microcontroladores, linguagens de programação e desenvolvimento de layout (www.cerne-tec.com.br).

Sumário

Capítulo 1 – Material Utilizado no Livro	12
1.1 Conhecendo as Ferramentas usadas no livro	12
Capítulo 2 - Conhecendo o MPLAB	14
2.1 Introdução	14
2.2 Código Básico para Programação	23
2.3 Gravando o Microcontrolador	27
Capítulo 3 – O Microcontrolador PIC32MX320F032H	30
3.1 Entendendo o PIC32	30
3.2 Características do PIC32MX320F032H	36
Capítulo 4 – Entendendo e Configurando os Configurations Bits	38
4.1 Os Configurations Bits do PIC32MX320F032H	38
4.2 PLL Input Divider	39
4.3 PLL Multiplier	45
4.4 System PLL Output Clock Divider	49
4.5 Oscillator Selection Bits	54
4.5.1 XT, HS, EC	54
4.5.2XTPLL, HSPLL, ECPLL	57
4.5.3 FRC	58
4.5.4 FRC/16	60
4.5.5 FRCDIV	61
4.5.6 FRCPLL	63
4.5.7 LPRC	65
4.5.8 SOSC	66
4.6 Secondary Oscillator Enable	67
4.7 Internal / External Switch Over	68
4.8 Primary Oscillator Configuration	68

Vitor Amadeu Souza

4.9 CLKO Output Signal	69
4.10 Peripheral Clock Divisor	70
4.11 Clock Switching and Monitor Selection	73
4.12 Watchdog Timer Enable e Postscaler	76
4.13 ICE/ICD Comm Channel Select	77
4.14 Boot Flash Write Protect	79
4.15 Code Protect	80
4.16 Configurando o Configuration Bits no Programa C	81
4.17 Configuration Bits Usados no Livro	96
4.18 Exercícios	98
Capítulo 5 – Linguagem C	102
5.1 Introdução	102
5.2 Variáveis	102
5.3 Constantes	118
5.4 Vetores	121
5.5 Matrizes	124
5.6 Declaração If	126
5.7 Declaração Switch	128
5.8 Comando For	139
5.9 Comando While	144
5.10 Comando Do While	147
5.11 Outros Operadores da Linguagem	148
5.11.1 Operador Aritmético	148
5.11.2 Operador de Bit	152
5.11.3 Operador Lógico	155
5.12 Conhecendo Outros Recursos do MPLAB	156
5.13 Exercícios	158
Canítulo 6 – Funções do C32	159

6.1 Funções Matemáticas	159
6.2 Manipulação de Caracteres	171
Capítulo 7 – Funções do Usuário	180
7.1 Introdução	180
7.2 Exercícios	186
Capítulo 8 – Explorando os I/Os do PIC32	187
8.1 Introdução	187
8.2 Registradores de Configurações de I/O	188
8.2.1 PORTE	189
8.2.2 PORTG, PORTB, PORTF, PORTC e PORTD	203
8.3 Simulação	215
8.4 Desafios	219
Capítulo 9 – Timers de 16 Bits	220
9.1 Introdução	220
9.2 Timer1	222
9.3 Timer2, Timer3, Timer4 e Timer5	241
Capítulo 10 – Timers de 32 Bits	250
10.1 Introdução	250
Capítulo 11 – Compare	258
11.1 Introdução	258
11.2 Modo 000, Compare Desabilitado	261
11.3 Modo 001, Pino 0C1 Inicia em 0 e Salta para 1 em Evento de Comparação	261
11.4 Modo 010, Pino 0C1 Inicia em 1 e Salta para 0 em Evento de Comparação	264
11.5 Modo 011, Pino 0C1 é Invertido em Evento de Comparação	267
11.6 Modo 100, Modo de Geração de Pulso Simples	269
11.7 Modo 101, Modo de Geração de Pulso Continua	271

11.8 Modo 110, Modo PWM sem Pino de Fault	273
11.9 Modo 111, Modo PWM com Pino de Fault	276
Capítulo 12 – UART	280
12.1 Introdução	280
12.2 Registradores Utilizados	283
Capítulo 12 – UART	305
13.1 Introdução	305
13.2 Interrupção Externa 0	308
13.3 Interrupção Externa 1	316
13.4 Interrupção Externa 2	320
13.5 Interrupção Externa 3	324
13.6 Interrupção Externa 4	328
13.7 Interrupção de Timer1	335
13.8 Interrupção de Timer2, Timer3, Timer4 e Timer5	339
13.9 Interrupção de Mudança de Estado	347
13.10 Interrupção Input Capture 1,2,3,4 e 5	353
13.11 Interrupção de Output Compare 1, 2, 3, 4 e 5	361
13.12 Interrupção de Transmissão e Recepção Serial	368
13.13 Interrupção de Conversão AD	372
Capítulo 14 – Capture	375
14.1 Introdução	375
14.2 000 – Modo de Captura Desabilitado	379
14.3 001 – Modo de Detecção de Borda de Subida ou Descida	379
14.4 010 – Modo de Captura na Borda de Descida	382
14.5 011 – Modo de Captura na Borda de Subida	384
14.6 100 – Modo de Captura na Quarta Borda de Subida	386
14.7 101 – Modo de Captura na Décima-Sexta Borda de Subida	389
14.8 110 – Modo de Captura Simples	391

14.9 111 – Modo de Interrupção	393
14.10 Capture2, Capture3, Capture4 e Capture5	393
Capítulo 15 – Modo de Tensão de Referência	399
15.1 Introdução	399
Capítulo 16 – Comparador	404
16.1 Introdução	404
Capítulo 17 – Conversor AD	418
17.1 Introdução	418
Apêndice 1 – Resposta dos Exercícios	452
Anêndice 2 – Esquema Flétrico do Kit Cerne PIC32	454