

Cerne Tecnologia e Treinamento www.cerne-tec.com.br

Manual do Usuário Kit X-Interface

(21) 4063-9798 (11) 4063-1877 E-mail: cerne@cerne-tec.com.br MSN: cerne-tec@hotmail.com Skipe: cerne-tec

1. Introdução	03
2. Hardware da Placa	04
2.1 Alimentação	04
2.2 Material que acompanha o kit	04
2.3 Posicionamento da Placa	04
2.3.1 Conector de Alimentação	05
2.3.2 Conector de Entrada	05
2.3.3 Conector de Saída	06
2.3.4 Conector Paralelo	07
2.4 Porta Paralela	07
2.5 Testando as Portas	08

Kit X-Inteface

1. Introdução

A placa X-Interface foi desenvolvida com o intuito de ser utilizada em aplicações ligadas à Robótica Educacional, em que o PC precise fazer alguma interação com o mundo externo. Com esta placa, você poderá ligar até quatro dispositivos como motores DC e lâmpadas e ler até quatro sensores como botões.

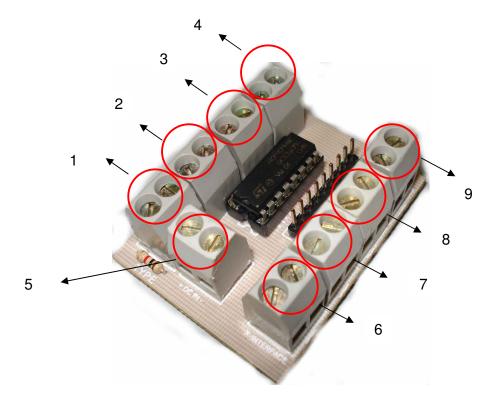
Nós, da Cerne Tecnologia e Treinamento, desejamos um ótimo aprendizado em seus projetos eletrônicos.

Bons Projetos!

2. Hardware da Placa

2.1 Alimentação

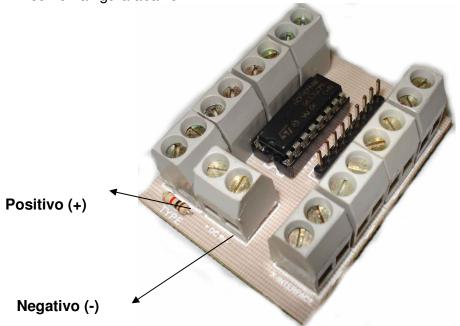
A placa X-Interface funciona com uma fonte de alimentação de 12V não estabilizada e com no mínimo 400mA de corrente. Nada impede que outras fontes com tensões superiores sejam usadas, desde que a tensão máxima *nunca* ultrapasse 24 VDC e não seja inferior a 4,5VDC.


2.2 Material que acompanha o kit

Este kit vai acompanhado dos seguintes acessórios:

- Fonte de alimentação 9V / 500 mA;
- Cabo de conexão paralelo com o PC.

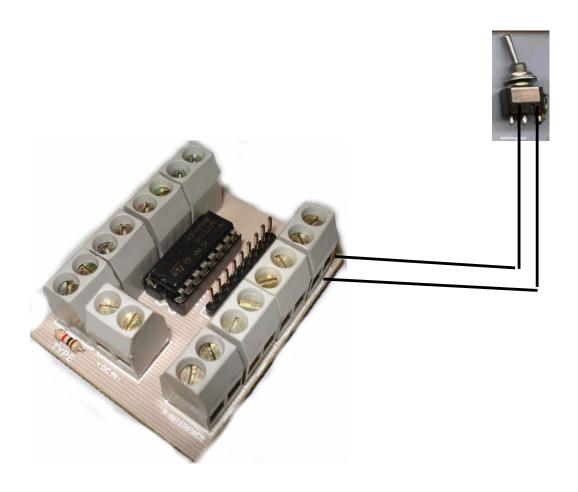
2.3 Posicionamento da Placa


O posicionamento da placa está apresentado abaixo:

- 1 Saída 4 (OUT4) É uma saída do sistema. Através deste, podemos ligar motores DC, lâmpadas e etc.
- 2 Saída 3 (OUT3) Idêntico ao item 1.
- 3 Saída 2 (OUT2) Idêntico ao item1.
- 4 Saída 1 (OUT1) Idêntico ao item1.
- 5 Alimentação da Placa. É através desta entrada que ligaremos a fonte do sistema.
- 6 Entrada 1 (INP1) Entrada para conexão de sensores, botões e etc.
- 7 Entrada 2 (INP2) Idêntico ao item 6.
- 8 Entrada 3 (INP3) Idêntico ao item 6.
- 9 Entrada 4 (INP4) Idêntico ao item 6.

2.3.1 Conector de alimentação

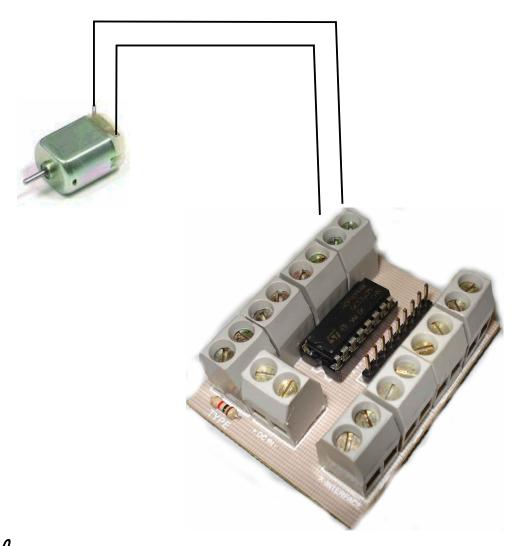
A fonte de alimentação utilizada pelo sistema deve ser do tipo DC (Corrente Contínua). O terminal positivo e negativo devem ficar conectados como na figura abaixo.



Se por algum motivo você inverter a alimentação, não se preocupe, a placa é equipada com um sistema que não a danifica se este evento acontecer.

Obs: A fonte sai configurada da Cerne Tecnologia para 220 V. Por tanto deve ser ajustada de acordo com a sua rede elétrica.

2.3.2 Conector de entrada


O sensor utilizado pela placa deve ser do tipo "contato seco". Estes sensores são assim denominados pois eles somente são capazes de fechar um contato e não emitir nenhum tipo de tensão. Exemplos destes sensores são os interruptores que são utilizados em casas residenciais e comerciais. Abaixo está apresentado como é feita a conexão entre um botão na placa X-Interface na entrada 4.

Sempre que este botão alterar de estado, o PC será capaz de checar esta conexão.

2.3.3 Conector de saída

A placa dispõem de 4 saídas e cada uma delas pode consumir no máximo 500 mA. Abaixo está sendo apresentado a conexão de um pequeno motor a uma das saídas.

Obs: Todas as cargas conectadas a placa devem ser do tipo DC e nunca AC!

2.3.4 Conector Paralelo

Através do conector paralelo, o PC pode se conectar à placa e ler todos os sensores assim como acionar as saídas da placa. Observe onde fica este conector na placa:

Neste conector fica conectado o cabo que deve ser conectado na porta paralela do PC para comunicar com a placa.

2.4 Porta Paralela

No PC, existem dois registradores que são utilizados para comunicação com a porta paralela. São eles o registrador de número 888 e 889. No registrador 888, fica o controle da saída enquanto no registrador 889 fica o controle das entradas. Observe abaixo o registrador 888.

Registrador 888										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

Neste registrador, somente os quatro bits inferiores são utilizados, ou seja, os bits 0, 1, 2 e 3. O bit 0 é referente a saída OUT1, o bit1 a saída OUT2, o bit2 a saída OUT3 e o bit3 a saída OUT4. Sempre que quisermos acionar uma das saídas, deveremos deixar o bit respectivo em nível alto e quando quisermos desligar a saída, devemos deixar o bit em nível 0. O logo (ou similares) tem um comando chamado *out registrador, valor* que permite acessar algum registrador do PC. Digamos que quiséssemos ligar a saída 1, desta forma, o bit 0 deveria ficar em nível alto resultando no valor 1. Como sabemos que o registrador é o 888, o comando fica da seguinte forma:

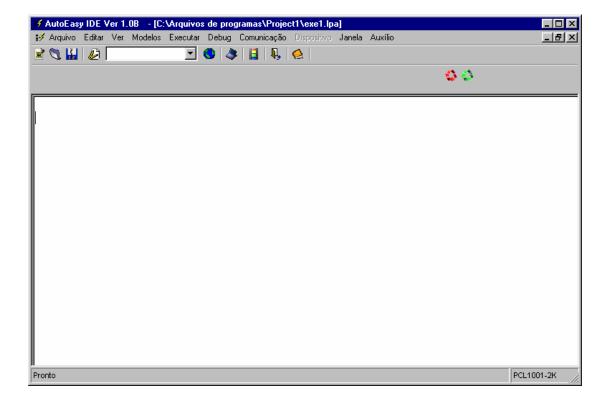
out 888,1

Nada impede que liguemos mais de uma saída. Digamos que queiramos deixar a saída 1 e 2 acionadas. Neste caso, o valor é 3 (Convertido em binário fica 00000011). O comando será o seguinte:

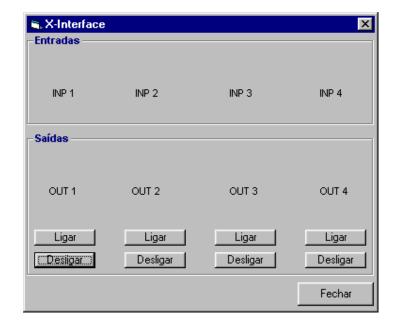
out 888,3

Não há problema algum em ligar mais de uma saída, desde que obedeçamos o limite de corrente em cada saída da placa.

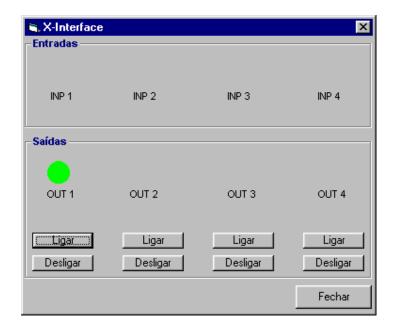
O registrador de entrada é o 889 e o mesmo pode ser visto abaixo:


Registrador 889									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		

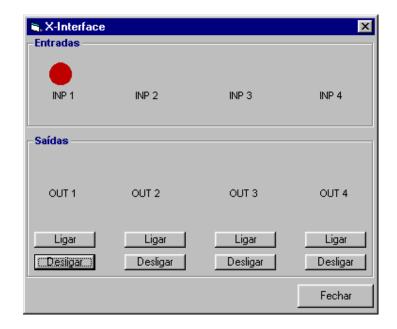
Destes bits, somente os bits 7, 6, 5 e 4 são utilizados. O bit 6 é referente a entrada 1, o bit 7 a entrada 2, o bit 5 a entrada 3 e o bit 4 a entrada 4. Quando as entradas 1, 3 e 4 não estão acionadas, estes bits ficam em nível lógico 1 e quando alguma destas entradas é acionada, o bit respectivo fica em nível 0. Estas entradas funcionam desta forma em lógica negativa, o que quer dizer que o estado ativo destas entradas é em 0 ao invés de 1. Somente a entrada 2 funciona em lógica positiva e quando esta entrada é acionada, o seu bit 7 fica em nível alto e caso contrário em nível baixo.


2.5 Testando as portas

Para testar a placa X-Interface utiliza-se o compilador AutoEasy desenvolvido por Cerne Tecnologia. Este compilador pode ser baixado gratuitamente no site da Cerne Tecnologia, no endereço **www.cernetec.com.br** ou você pode instalar o mesmo a partir deste CD, onde este software veio em anexo. Após instalar e iniciar a AutoEasy, você verá a seguinte tela:


Clique no menu Ver -> X-Interface. A seguinte tela surgirá:

Obs: Caso o seu Windows seja NT/2000/Xp ou superior, será necessário liberar o acesso da porta paralela, pois nestes Windows são do tipo privilegiada.


Visite o site da Cerne Tecnologia e acesse a seção <u>Tutoriais</u> e veja o link que relata como liberar o acesso da porta paralela nestes sistemas operacionais.

Se desejar ligar um pequeno motor que esteja conectado na saída OUT1:
Clique no botão ligar referente a OUT1, a tela ficará da seguinte forma:

- Para desligar basta pressionar o botão Desligar. Este mesmo processo pode ser repetido para o restante das saídas.
- Ler a entrada 1 da placa Caso a mesma seja ativa, automaticamente acenderá um led respectivo a entrada como na figura abaixo:

Estes são os passos para operar a X-Interface. Permanecendo alguma dúvida, não hesite em nos contatar.

Você pode nos acionar através das seguintes formas de comunicação:

Telefone: (21) 4063-9798 ou (11) 4063-1877

E-mail: suporte@cerne-tec.com.br

MSN: cerne-tec@hotmail.com

Skype: cerne-tec

Bons Projetos!

Equipe da Cerne Tecnologia