

Cerne Tecnologia e Treinamento

Tutorial para Testes na Placa de Análise de espectro

suporte@cerne-tec.com.br www.cerne-tec.com.br

Sumário

1. Reconhecendo o Kit	03
2. Reconhecendo a Placa de Análise de Espectro	04
3. Entradas Digitais	05
4. Saídas Digitais	07
5. Conector de Alimentação	08
6. Conector de Entradas Analógicas	09
7. Conector de Saída Digital para Analógica	10
8. Testes na Placa	10
9. Comando de Leituras de Entrada	11
10. Comando de Acionamento de Saídas	13
11. Comando de Leitura de Entradas Analógicas	13
12. Suporte Técnico	15

Todos os direitos reservados à Cerne Tecnologia e Treinamento LTDA.

Nenhuma parte desta edição pode ser utilizada ou reproduzida – em qualquer meio ou forma, seja mecânico, eletrônico, fotocópia, gravação ou etc. – nem apropriada ou estocada em sistema de banco de dados sem a expressa autorização.

1. Reconhecendo o Kit

Antes de iniciar este tutorial, vamos reconhecer o material que acompanha este kit.

Obs: A alimentação da placa é feita através da conexão com a USB do computador.

2. Reconhecendo a Placa de Analisadora de Espectro

Vamos agora reconhecer os pontos da Placa de Análise de espectro:

Receptáculo USB

Conector de 5V, GND, Saídas Digitais e Entradas Digitais

Conector com Entradas/saída Analógica e referência.

3. Entradas Digitais

As entradas digitais da placa estão apresentadas abaixo (observe no silk da placa as descrições INP1, INP2 e INP3):

Todas as entradas são do tipo seco, ou seja, ao ficar aterrada (conectada ao GND) a mesma está em nível alto para o programa e caso contrário em nível aberto. A próxima figura mostra à conexão de um interruptor a entrada INP1.

Obs: Em hipótese alguma conecte um sensor energizado as entradas do kit, sob pena de danificar o microcontrolador e até mesmo o computador!!!

4. Saídas Digitais

As saídas digitais da placa estão apresentadas abaixo (observe no silk da placa):

Todas as saídas são do tipo energizado, ou seja, quando ficam em estado ativo deixam a saída nível alto (5V) e no estado desligado ficam em nível baixo (0 V). A próxima figura mostra a conexão de um led a saída OUT1.

Obs: A corrente máxima por saída são de 25 mA. Passado tal valor, o pino pode danificar irremediavelmente!!!

5. Conector de Alimentação

A placa quando conectada a USB fornece as tensões provenientes deste barramento, que são 5 V e GND. Na figura abaixo é apresentado à localização destes conectores (observe com o silk da placa):

Obs: Não conecte nenhum carga que consuma acima de 100 mA neste conector, pois este é o limite máximo fornecido pela porta USB do computador. Passado tal valor, a porta USB danifica-se!!!

6. Conector de Entradas Analógicas

Na figura abaixo está apresentado a localização dos conectores de entrada analógica. Ao todo há 8 entradas, onde cada uma pode variar na faixa de -5 V a 5 V (observe no silk as entradas AD1 até AD8).

Obs: Nunca ultrapasse os limites das entradas analógicas da placa (-5V a 5V), pois poderá danificar a entrada analógica do kit.

Obs: Todas as entradas devem estar referenciadas com o pino REF, identificado no silk como DA2. A próxima figura mostra a conexão de um gerador de função ao analisador de espectro a entrada AN1.

A entrada AN1 está conectada a saída do conector OUT do gerador de função (modelo GV-2002 como referência) e o pino REF da placa analisadora de espectro ao terminal comum deste mesmo conector.

7. Conector de Saída Digital para Analógica

A placa possui uma saída analógica, chamada DA1 que pode ser verificada a seguir.

Esta saída varia de 0 a 5V de acordo com o comando enviado pelo computador e sua referência é o GND.

8. Testes na Placa

Na aquisição da placa é fornecido um programa executável feito em Delphi que permite testar todas as funcionalidades da placa. Além do programa, é fornecido o código fonte de modo a permitir ao leitor fazer as modificações necessárias de acordo com a sua

necessidade. Vá a pasta *Programa e Fonte Delphi* fornecido juntamente com os arquivos que acompanham o kit e abra o arquivo DFT.exe. A seguinte tela surgirá.

Através deste programa é possível testar todos os recursos disponíveis na placa como entradas digitais, saídas e entradas analógicas. O código fonte encontra-se na mesma pasta, permitindo modificá-lo de acordo com a sua necessidade (abra o arquivo DFT.dpr que contém todos os arquivos de projeto).

9. Comandos de Leitura de Entradas

Para verificar o estado de uma das entradas digitais presentes na placa, deve-se enviar o caracter "I" seguido do número "1", "2" ou "3" referente à entrada em teste. Por exemplo, observe a configuração abaixo.

Ao clicar no botão Enviar, o comando "I1" é enviado ao kit. Neste momento, obtém-se a resposta do estado presente na entrada INP1. Caso esteja aterrada, o valor retornado será "1" e caso contrário "0". Observe abaixo o mesmo exemplo, porém com a resposta da entrada INP1:

Note que no caso acima foi retornado o caracter "0" que indica que a entrada INP1 não está aterrada. Esta mesma ideia de teste das entradas digitais é válida para as outras entradas presentes na placa.

10. Comandos de Acionamento das Saídas

O comando para acionamento das saídas é composto do caracter "O" seguido da saída a realizar-se o acionamento que pode ser a saída "1", "2" ou "3" seguida do estado lógico que deseja-se nesta saída, podendo ser "1" ou "0". Como exemplo, ao digitar o comando "O11" a saída OUT1 fica em nível alto e "O10" desliga a mesma.

Obs: Todos os comandos são case sensitive, ou seja, caracter maiúsculos diferem dos minúsculos. Em todos os comandos os caracteres usados são maiúsculos.

11. Comandos de Acionamento da Saída Analógica

Conforme mencionado a placa dispõem de 1 saídas analógicas identificada por DA1. Podemos controlar esta na faixa de 0 a 5V e deve-se passar para a mesma um valor de 0 a 255, onde 0 representa nível lógico 0 V e 255 representa o valor máximo de 5 V. O restante da faixa é linear e caso desejássemos uma tensão de 2,5V deveríamos enviar o valor 127. Este comando é formado pelo caracter "D" seguido de "1" e por 3 caracteres que representam do valor 000 a 255. Estes comandos são enviados pela mesma caixa de comando do programa apresentado.

12. Comandos de Leitura das Entradas Analógicas

Obs: Inicialmente recomenda-se testar o kit com um gerador de função com frequência ajustável de 0 a 30 kHz. Configure a tensão de pico para até 5V.

As entradas analógicas da placa podem ser lidas individualmente pelo comando "A" seguido do caracter "1" a "8" referente à entrada analógica do kit. Neste momento, o kit retorna um buffer de 128 posições de acordo com o sinal analisado de modo a plotar o gráfico em seguida. Ao receber estas 128 amostragens, o programa calcula a DFT e plota um gráfico de acordo com os módulos dos números complexos encontrados pela rotina. A próxima figura mostra o resultado observado ao configurar o gerador de função com sinal senoidal para a frequência de 10 kHz e tensão Vpp de 5 V.

Observe que a frequência fundamental está centrada em 10 kHz. A próxima figura mostra o mesmo sinal com frequência ajustada no gerador de função de 20 kHz.

Ao utilizar um sinal digital na mesma frequência e amplitude, observe a presença de mais harmônicos se comparado ao sinal puramente senoidal como apresentado na figura a seguir.

13. Suporte Técnico

Qualquer dúvida que você tenha não hesite em nos contatar!

Temos os seguintes meios de acesso:

Telefone: (21) 3062-1711

E-mail: suporte@cerne-tec.com.br

Desejamos a você um excelente desenvolvimento de projetos eletrônicos

microcontrolados!

Cerne Tecnologia e Treinamento LTDA